

Primitive Programming Manual

June 25, 2008

Address: Blue Horizon Development Software, Inc.

 18000 Horizon Way, Suite 200

 Mt Laurel, NJ 08054

Telephone: (856) 231-4458

FAX: (856) 231-1403

Internet: www.gedae.com

Primitive Programming Manual 2

Primitive Programming Manual 3

Table of Contents

1 Introduction ... 5

2 Creating a Primitive .. 6

A Simple Primitive ... 7

Inplace Streams ... 9

E_functions ... 10

Parameter Inputs ... 11

Data Types .. 12

3 Token Types.. 13

Vectors .. 13

Matrices... 15

Variable Vectors and Matrices.. 16

Tiled Matrices ... 17

4 Static Data Flow Parameters ... 20

Produce and Consume Amounts ... 20

Local Variables and Reset Methods ... 22

Overlap and Hold .. 24

Delay ... 27

Iterate .. 29

5 Families ... 31

6 Dynamic and Nondeterministic .. 35

Dynamic Queues ... 35

Nondeterministic Queues .. 36

7 Summary of Positional and Named Parameter Notation .. 41

8 Pointer Streams ... 43

9 Inplace Streams ... 46

Fixed Inplace Streams ... 46

Optional Inplace Streams .. 46

Inplace Output Pointer Streams .. 47

Inplace Input Pointer Streams ... 51

Inplace Tiled Pointer Streams ... 52

Setting of Tiled Stream Dimensions ... 53

10 Unmapped Memory .. 55

11 Persistent Memory .. 57

12 Segmented Data Flow ... 58

Segmented Outputs ... 58

Segmented Parameters .. 58

Exclusive Outputs ... 58

External State .. 58

13 Runlength Encoded Streams ... 59

14 Cyclic Boxes ... 61

15 Eval and Trigger Boxes .. 67

Eval Boxes .. 68

Trigger Boxes.. 69

GUI Trigger Boxes ... 70

Primitive Programming Manual 4

16 Typedef Boxes .. 73

Appendix – Suggested Style Guide .. 75

Naming Primitives .. 75

Naming Variables ... 75

Comments ... 75

Index ... 76

Primitive Programming Manual 5

1 Introduction

Gedae applications are developed as graphical hierarchies of boxes. Primitive boxes are

the fundamental box types from which flow graphs are constructed. As the basic

algorithmic units used to construct applications, they transform data, communicate with

external programs, switch data to different parts of applications, display data, and handle

I/O. Primitives provide a modular way to introduce code into applications.

Thousands of primitives are supplied by the Gedae core library. They handle data of type

float, int, and complex and handle tokens that are scalars, vectors, matrices,

variable vectors, and variable matrices. Many applications can be built using only the

core library primitives. In addition, you have the choice of introducing your own code by

writing custom primitives. Some of the reasons for writing custom primitives are:

 To execute a complex algorithm that is not easily decomposed into the available

core library primitives

 To process data structure types not handled by the core library

 To execute heritage code that you may later decompose into standard Gedae

primitives

 To access a hardware device unique to your configuration

 To encapsulate a custom Graphical User Interface (GUI)

 To communicate with programs running externally to Gedae

The Gedae primitive language is flexible enough to capture a wide range of behavior.

Using the language, you can write boxes that do static and dynamic data flow, control

flow, state transitions, and parameter transformations. Primitives can be written to

produce/consume data from their input/output ports at different rates. The rates can be

statically fixed, cyclically changing, or completely dynamic. Primitives can have a

parameterized number of inputs and outputs. You can declare state variables that provide

persistent storage for the primitive as it is executing. You can also create methods to

initialize, reset, save, and restore a primitive’s state.

This manual describes how to create custom Gedae primitives and make use of the many

features of the primitive language to capture your algorithm’s behavior.

Primitive Programming Manual 6

2 Creating a Primitive

A Gedae box takes input data, performs a calculation, and writes output data. A box can

be a subgraph or it can be a primitive, that is, C-code organized into methods that

define the computations of the box.

To learn how to write primitives, we begin by creating a new box.

To create a new box, select EditAdd Box from the editor, and then type in the

filename of the new box in the section labeled Selection, as shown in Figure 1. If a

box with that name does not exist, then Gedae will ask you whether you wish to create a

new primitive or flow graph. For this example we will select Create Primitive.

Figure 1 – Creating a new primitive

Primitive Programming Manual 7

 A Simple Primitive

When Create Primitive is selected, an editor similar to the one in Figure 2 pops

up. The default content of the editor shows several fields: Name, Type, Comment,

Input, Output, and Apply.

Figure 2 – The Primitive Editor

The Name field is the same as the filename of the box, the Type field specifies the kind

of box, and the Comment field is a text string that the box writer can set to describe the

functionality of the box. (This Comment field is also incorporated into the Gedae flow

graph editor and is shown when you press the Help button in the Add Box or Search

Dialog.) For this chapter we will only consider boxes of Type: static. A simple

definition of a box of static type is that the box has a stream input and/or output.

The next two fields shown in Figure 2 describe the inputs and outputs of the box. For our

add box, we will simply be adding two streams called a and b and placing the result on

an output stream called out. To define a stream input of a primitive, declare the input as

a stream in the Input section of the box. For our add box, we declare:

Primitive Programming Manual 8

Input: {

 stream float a;

 stream float b;

}

To define a stream output of a primitive, declare the output as a stream in the Output

section of the box. For our add box, we declare:

Output: {

 stream float out;

}

Now that we have created a new box and have defined its inputs and outputs, we must

write the code that performs the calculation. This calculation is done in the Apply field

(also known as the Apply method of the box. The code used in this method is straight

C-code, which is extended by built-in variables and functions.

The first and perhaps most important built-in variable is granularity. Each input and

output stream is implemented as a queue, and the granularity of a box defines the

number of tokens available on these queues when the Apply method is called. Thus, the

granularity of a primitive is the number of times the primitive executes its basic

algorithm. The box writer must construct the Apply method to perform the correct

computations for any value of granularity.

The most straightforward way to accommodate different granularities is to construct a

granularity loop – a for-loop that iterates from 0 to granularity-1. For our add

box, we will construct a granularity loop as follows:

Apply: {

 int g;

 for (g=0; g<granularity; g++) {

 out[g] = a[g] + b[g];

 }

}

The inputs and outputs we declared above are queues (or arrays) in the Apply method.

Each array has the same granularity number of items when the Apply method is

called. The for-loop loops over the arrays, adding a and b, and putting the result in out.

After writing the Apply method, our add box is now complete and should appear in the

primitive editor as in Figure 3. We can save the primitive by selecting FileSave and

closing the editor. Now let’s construct a graph to test our new primitive. Create a simple

graph with two sources (look in embeddable/stream/source/) and a scope,

which will display the output values (stream/sink/scope1). Our add box should

add the two input streams.

Primitive Programming Manual 9

Figure 3 – Final add primitive

 Inplace Streams

One improvement we could make to our primitive in Figure 3 is to have the input queue

a and the output queue out use the same address space. Gedae allows primitives to

share input and output address space via the word inplace in the Output field of the

box. For our add box, we can change the Output section to:

Output: {

 inplace stream float out=a;

}

The stream out is declared as an inplace stream. We specify that it will take the

same place in memory as input a by stating out=a at the end of the declaration. By

making this change to the Output declaration, the Apply method can no longer refer to

the stream out; only stream a exists. Thus, we should change our Apply method to:

Primitive Programming Manual 10

Apply: {

 int g;

 for (g=0; g<granularity; g++) {

 a[g] += b[g];

 }

}

 E_functions

Applications created in Gedae run at near hand-coded efficiency. One reason Gedae can

make this claim is that the optimized routines supplied by the vendor can be

automatically incorporated into the box through the use of the E_functions. The

E_functions are a set of common functions, including such functions as addition,

copying, the FIR filter, and the Fast Fourier Transform. If a box calls an E_function

when it executes on an embedded platform, then a version of the routine optimized for

the platform is automatically used in the box (if available). The optimized routine

replaces the vanilla C-code version of the function that is used when the box executes on

the workstation. A full list of the E_functions is available in Appendix C of the Gedae

Reference Manual.

To complete the construction of our first box, we consult Appendix C and find that there

is an E_function available for adding two floating-point streams:

void e_vadd(float *a,int ia,float *b,int ib,

 float *c,int ic,int n);

As described in the Appendix listing for this function, a, b, and c are inputs and outputs,

the integers ia, ib, and ic are the strides used in looping over the arrays, and the

integer n is the number of elements to add. Thus, in order to have an efficient box, we

rewrite our Apply method to call the above function:

Apply: {

 e_vadd(a,1,b,1,a,1,granularity);

}

However, we must also introduce a new field to the primitive in order to run a graph

using this new version of the box; it’s called the Include field. Each E_function has a

corresponding include file, and any include file (as well as, local functions and macros)

can be added to a primitive in the Include section of the box. For our box, we add the

following before the Apply method and after the Output declaration:

Include: {

#include <e_vadd.h>

}

Primitive Programming Manual 11

Any needed include file can be placed in the Include section. For example, if we

wished to call printf in the Apply method, we could add #include <stdio.h>

to the Include section.

 Parameter Inputs

The add box we have constructed above adds two streams together. Parameter inputs

can also be used in boxes. If our add box were to add a floating point parameter to a

stream, then we would modify the Input section of the box to:

Input: {

 stream float in;

 float K;

}

Here we have declared a stream input in and a parameter K. The Apply method to add

the stream and parameter is:

Apply: {

 int g;

 for (g=0; g<granularity; g++) {

 out[g] = in[g] + K;

 }

}

Of course, much like our first addition box, we can use an inplace stream to save memory

usage and an E_function (in this case, e_vsadd) to improve the memory usage and

efficiency of the routine.

It is useful to provide default values for many parameter inputs, and Gedae provides a

way for doing this through the Init method. Values set in the Init method are

used unless the input is connected to a data element on the graph, or the user sets the

values using the Gedae Parameter Table. The Init method should not perform any

calculations other than setting default values. For example, to set the default value of K

to 1 in the addition box, insert the following Init method between the Include and

Reset sections:

Init: {

 K = 1.0;

}

Primitive Programming Manual 12

 Data Types

Gedae’s core library supports three main data types: float, int, and complex. The

float type is the standard C single precision floating point number. The int type is

the standard C integer. The complex type is a pair of floats stored side-by-side in

memory.

To convert the my_add box in Figure 3 to a box that operates on the int data type,

simply switch the declarations of type float in the Input and Output sections of the

box to declarations of type int.

To convert the my_add box in Figure 3 to a box that operates on the complex data

type, first switch the float declarations to complex declarations. Then alter the

Apply method to:

Apply: {

 int g;

 for (g=0; g<granularity; g++) {

 out[g].re = a[g].re + b[g].re; /* add real parts */

 out[g].im = a[g].im + b[g].im; /* add imag parts */

 }

}

While Gedae’s core library supports float, int, and complex types, a box can be

written using any C data type including custom structures. For example, if we wanted to

make a stream of 3-D coordinates, we could define and use a structure as in the following

example:

Input: {

 stream coord3d in;

}

Output: {

 stream coord3d out;

}

Include: {

 struct _coord3d {

 float x;

 float y;

 float z;

 }

 typedef struct _coord3d coord3d;

}

Custom primitives must be created to support this new 3-D coordinate type.

Primitive Programming Manual 13

3 Token Types

The examples we have investigated thus far have operated on scalars only. Boxes have

added scalar streams and scalar parameters. Tokens and parameters can also be arrays.

 Vectors

Vector and matrix streams are declared the same way as scalar streams; they also have

array dimensions. For example, if we were to redo our add box to add two vector

streams, our Input section would be:

Input: {

 stream float a[N];

 stream float b[N];

}

and the Output section, retaining the property that out and a share the same memory

(that is, the queue is inplace), would be:

Output: {

 inplace stream float out[N]=a;

}

When the Apply method is called, there are granularity tokens on each queue, and

each token has N elements, as declared above. Thus, the Apply method for the vector

version of the add box would be:

Apply: {

 int g, i;

 for (g=0; g<granularity; g++) {

 for (i=0; i<N; i++) {

 a[i] += b[i];

 }

 a += N;

 b += N;

 }

}

Like the scalar version discussed in Chapter 2, this Apply method loops over the

granularity; however, inside the granularity loop we must perform the addition for

each element of the vector – it is not only a scalar addition. After each vector is

processed, the a and b pointers are incremented to point to the next tokens in the streams.

Primitive Programming Manual 14

As in Chapter 2, the E_function can and should be used, making the box more efficient

when run on an embedded processor. This Apply method can be rewritten as a call to

e_vadd with the length input being N*granularity as shown in Figure 4.

Figure 4 – Final implementation of a vector add

Note that Gedae provides a built-in function size that returns the number of values on a

queue (whether it be an input or output). In this case, size(a) is equal to

N*granularity. In general, size(a) is equal to the number of scalar values in

stream a.

Now that we have finished implementing this v_add box, it is evident how input vector

data is passed to the box. However, where does the value of N come from? There is no

input parameter to the v_add box that defines this length. Instead, the value is inherited

from upstream boxes; at some point upstream there is a parameter that defines the size of

the vector and each downstream box uses that value to define its inputs and outputs. We

see in the v_add box how the size continues downstream: inputs a and b know their

size N from the upstream boxes’ definitions, and thus, the box is able to specify the

output out as having that same token size N.

Primitive Programming Manual 15

The vector size may be altered as it is passed downstream; we are not limited to merely

propagating the value. For example, if a box concatenates two vectors, then it has an

Input section:

Input: {

 stream float a[N];

 stream float b[M];

}

and an Output section:

Output: {

 stream float out[N+M];

}

(See embeddable/vector/v_concat for the full implementation.)

 Matrices

Matrices are implemented in a similar manner as vectors. The matrix is declared with a

row size (number of rows) and a column size (number of columns) like the following

example:

stream float in[R][C];

However, the queue is still implemented like a one-dimensional array and is accessed as

such in the Apply method of the box. Thus, if we are adding two matrices of size RxC,

our Apply method can be written as:

Apply: {

 int g, i;

 for (g=0; g<granularity; g++) {

 for (i=0; i<R*C; i++) {

 a[i] += b[i];

 }

 a += R*C;

 b += R*C;

 }

}

This Apply method is a copy of the one written for the previous vector box. We are

using a token size of R*C instead of N. The matrices are stored in row order, that is,

element [i][j] of an R*C matrix is located at index i*C+j in the one-dimensional

array.

Primitive Programming Manual 16

 Variable Vectors and Matrices

When vectors and matrices, as described in the previous two sections, are used, the size

of the arrays must be constant during the entire execution of the graph. If the application

requires that the size of the arrays change during execution, then variable sized arrays can

be used. A stream of variable-sized vectors (or variable vectors) is essentially the

combination of a fixed length vector stream along with a stream of integers that defines

the actual size of the vector. The fixed size defines the maximal size of a vector, but the

length stream defines how many elements are actually used in each token. Such a stream

is declared as:

stream float a[n,Max];

In the example above, each token on the stream is allotted Max elements. Token i on the

stream actually uses n[i] elements.

When adding two variable vector streams, we use these length streams to determine with

which elements to perform the addition, and we use the value of the maximal size to

determine where the next token in the stream begins. The primitive that performs this

addition is shown in Figure 5.

Figure 5 – Variable vector addition

Primitive Programming Manual 17

As in previous sections, the primitive loops over the granularity, and at each step must

add all the elements of the tokens. This time, however, the number of elements in the

token to add is not constant but rather n[g], a value that can be different for each vector.

(Note: Even though streams a and out are inplace, their length streams are not, and the

length stream n must be copied into the length stream q.) To increment the pointers to

the next token in the stream, we must increment the pointers by the maximal size.

Variable matrices extend variable vectors in the same way that matrices extend vectors.

The queue is still implemented as a one-dimensional array; however, now there are two

maximal sizes and two length streams to define the token size. A variable matrix stream

is declared as:

stream float a[r,MaxR][c,MaxC];

In this example, each token on the stream is allotted MaxR*MaxC elements. Token i on

the queue actually uses r[i]*c[i] elements.

These elements of a variable matrix token are stored in a tightly packed fashion. In other

words, all r[i]*c[i] elements are stored at the beginning of the token; the unused

elements are all at the end of the token. This layout is shown in Figure 6. Elements in

the 4x3 matrix are marked by their row number, and unused elements are colored black.

Figure 6 – Layout of a variable matrix

 Tiled Matrices

It is sometimes desirable to specify that the input token is a matrix embedded in a larger

matrix. This can be done using the tiled dimension notation. For example

 stream float in[Rt:R][Ct:C]

indicates that the input matrix to be processed is of size Rt*Ct but is embedded in a

larger matrix of size R*C. The pointer in is a pointer to the beginning of the matrix

within the larger matrix. Below the tiled matrix in is seen embedded in a larger matrix

A. The address of in is offset from A by an row offset of Roff and a column offset of

Coff to give a total address offset of Roff*C+Coff.

0 0 0 0 1

1 1 1 2 2

2 2

MaxR = 4 r[i] = 3

MaxC = 5 c[i] = 4

r

Primitive Programming Manual 18

Pointer in points to subtile embedded in larger matrix A

An Apply method that accesses all the input values would be:

Apply: {

 int g,r,c;

 for (g = 0; g<granularity; g++) {

 for (r = 0; r<Rt; r++) {

 for (c = 0; c<Ct; c++) {

 float x = in[r*C+c];

 …

 }

 }

 in += R*C;

 }

}

Note that while Rt*Ct values are accessed we index into the matrix with the expression

r*C+c instead of r*Ct+c (as we would if the input was declared in[Rt][Ct]). Also we

advance to the next token by adding R*C instead of Rt*Ct.

Tiled streams can be of any dimensionality – including one-dimensional. In all cases we

call the stream tiled – that is we can have tiled vector streams, tiled matrix streams and

tiled 3d matrix streams. For example all of the following are tiled streams:

stream float a[Nt:N];

stream float b[Rt:R][Ct:C];

stream float c[Xt:X][Yt:Y][Zt:Z];

C

 Ct

Rt

R

in = A+Roff*C+Coff

Coff

Roff
A

Primitive Programming Manual 19

A rule has been established and is enforced by the Gedae parser that if one input or

output of a primitive is subtiled then all must be. This rule increases the generality of

primitives that have tiled dimensions.

Tiled dimensions are often used in conjunction with inplace pointers to allow zero copy

specification of matrix partitioning into tiles. Examples of such primitives are found in

embeddable/matrix/mt_rpart, embeddable/matrix/mt_rpartN,

embeddable/matrix/mt_concatN_ro. A further discussion of tiled streams as they are

used with inplace pointers is found in the section on Inplace Tiled Pointer Streams.

The setting of tiled dimensions in the context of a larger Gedae graph follows rules that

are described in the section Setting Tiled Stream Dimensions.

Primitive Programming Manual 20

4 Static Data Flow Parameters

The examples we have discussed have consumed granularity tokens from each input

stream and produced granularity token on each output stream. Actual data flow is often

more complicated than these examples. In this section we describe different static data

flow parameters. Static data flow parameters are ones that are predetermined before the

primitive fires. This predetermination is opposed to dynamic data flow parameters that

can be determined by the primitive when it fires.

 Produce and Consume Amounts

The number of tokens consumed or produced on a stream for each execution of the

granularity loop of the primitive are called the consume amount and produce amount.

These amounts are assumed to equal 1 unless otherwise specified. We will look at non-

unity produce and consume amounts as seen through conversion between scalars, vectors,

and matrices. If we are converting a stream of scalars into a stream of vectors, then to

produce one vector token we need N scalar elements (where N is defined by an input

parameter). This conversion is illustrated in Figure 7; if the vector size is 3, three scalar

tokens are needed to create one vector token. Even though the number of elements on the

queue stays the same, we are still consuming more tokens than we are producing.

Figure 7 – Scalar to vector conversion with consume amount of 3

The inverse conversion, a stream of vectors to a stream of scalars, will increase the

number of tokens on the queue. If the image in Figure 7 is flipped, then we need to

create three scalar tokens for each vector token. The granularity of downstream boxes

will be affected by this non-unity produce amount.

Let’s create boxes that convert between scalars and vectors to see how produce amount

and consume amounts are specified in boxes. To convert from scalars to vectors, we

need an input parameter to define the size of the output vector and the input consume

amount. The scalar to vector conversion box is as follows:

Name: s_v

Type: static

Input: {

 stream float in(N);

 int N;

}

1 vector token 3 scalar tokens

Primitive Programming Manual 21

Output: {

 inplace stream float out[N]=in;

}

The input parameter N will allow us to specify the size of the vector. Placing this

number, surrounded by parentheses, after the name of the input stream specifies a

consume amount of N on the stream. Alternatively we can say (consume = N) to specify

the consume amount. The output stream is then a vector of length N; however, it is also

an inplace queue that uses the same memory as the input queue. This box does not need

an Apply method because it is a “no-op” box, that is, it performs no operations, just

redefines how data is laid out in memory.

To convert from a stream of vectors to a stream of scalars, we produce multiple tokens on

the output for each input consumed as follows:

Name: v_s

Type: static

Input: {

 stream float in[N];

}

Output: {

 inplace stream float out(N)=in;

}

In the stream-to-vector box, the value in the parentheses on the input defined the

consume amount; in the vector-to-stream box, the value in the parentheses on the output

defines the produce amount. Alternatively we can specify the produce amount as

(produce=N). Each input vector has N elements, and when converted to a stream of

scalars, there are N scalar tokens for each vector. Once again, this is a no-op box, as the

output elements are the same as the input elements, but we are redefining them as scalar

tokens instead of vectors.

When there is non-unity produce or consume amount this causes the primitive to have a

non-unity data flow gain. For example, if we investigated the value of the granularity in

boxes downstream from a vector-to-scalar conversion, then their granularity would be

larger by a factor of N than boxes that performed calculations on the stream of vectors.

However, the granularity of the box that performs the conversion is not affected; it only

changes the granularity of boxes downstream.

This change of granularity is shown in Figure 8. The v_ramp box has a granularity of

G, and the conversion from the vector-to-scalar conversion box v_s causes the

downstream box sqr to have a granularity of N*G. The granularity of the v_s box is G,

although, it increases or decreases the granularity for boxes downstream but not for itself.

The granularity table (opened from selecting Firing Table… in the Group Control dialog)

in Figure 8 shows what happens when a granularity multiplier of 5 is applied. The sqr

box will handle 80 tokens per execution, 5 multiplied by the vector size of 16. However,

Primitive Programming Manual 22

the v_s and v_ramp boxes will handle 5 tokens per execution; the value of the

granularity variable inside the box will be 5.

Figure 8 – Change in granularity from a non-unity produce amount

 Local Variables and Reset Methods

Sometimes data from previous tokens and previous executions of the Apply method is

needed in order to perform a computation. One way to store this data is to declare

variables in the Local section of the box. For example, a box may perform an

accumulation of a stream, setting each token on the output as the sum of all tokens that

have previously been on the stream. We can calculate this sum by storing the current

sum in a local variable, and by setting up a Local field as follows:

Local: {

Primitive Programming Manual 23

 float Sum;

}

and then, retrieving and storing this sum in the Apply method (the following assumes

the output queue and input queue are inplace):

Apply: {

 int g;

 in[0] += Sum;

 for (g=1; g<granularity; g++) {

 in[g] += in[g-1];

 }

 Sum = in[granularity-1];

}

However, a natural question might be how is Sum initialized? This initialization is not

done in the Apply method and cannot be done there. Instead we must use a different

method, a method run only when the graph is reset, that is, the Reset method. Like the

Apply method, the Reset method can contain any C-code. In this case, the Reset

method sets the Sum to 0 so that it has a value when the Apply method is first called:

Reset: {

 Sum = 0;

}

The full code of the accumulation box, using the appropriate E_function, is shown in

Figure 9.

Primitive Programming Manual 24

Figure 9 – Implementation of stream accumulation

Arrays can also be declared in the Local field of a box, and this method of allocating

memory for a local array is more portable in Gedae than using the C routines malloc

and calloc or declaring the vector as a temporary array in the Apply method.

 Overlap and Hold

Sometimes the previous data and computations needed in the Apply method are not one

or two values but rather a set of N values. For example, in a sliding window average, the

latest N values are averaged for some input parameter N, and that value is placed on the

output.

Specifying an overlap of N-1 on an input stream will retain the last N-1 tokens between

executions. When a new token is consumed on the stream, the N-1 tokens in the overlap

can be summed with the new token to produce the result. To declare such an overlap, we

add a second number to the parentheses behind an input name:

Primitive Programming Manual 25

Input: {

 stream float in(1,N-1);

 int N;

}

Output: {

 stream float out;

}

The overlap for the stream in is now N-1; therefore, in order to specify an overlap, we

must also specify the consume amount – in this case, the default value of 1. Each time

the Apply method is executed, the first new token on the stream will be stored at in[N-

1]. The values before in[N-1] will be the N-1 overlap tokens stored from the

previous execution as shown in Figure 10. (These values are 0 if otherwise undefined

during the first firings of the box.) In the figure below, the dark gray cells represent old

values still on the input queue, and light gray cells represent new tokens on the queue.

For each unit of granularity, N items are used in the calculation of the output token.

Figure 10 – Data on queues when input has an overlap

Using this overlap, the Apply method can be written as:

Apply: {

 int g, i;

 for (g=0; g<granularity; g++) {

 out[g] = 0;

 for (i=0; i<N; i++) {

 out[g] += in[g+i];

 }

 out[g] /= N;

 }

}

out in

N = 3

granularity = 5

Primitive Programming Manual 26

The innermost loop sums over the length of the window, touching a new token at

in[g+N-1], and placing the tally in out[g]. (This function is implemented more

efficiently in embeddable/stream/avewin.)

A hold on an output stream performs a similar operation to an overlap on an input

stream. When creating an output stream with a hold, you specify that some output tokens

be held from being produced until later executions. Let’s redo our sliding window

average box using an output stream with a hold.

Declaring a hold on an output stream is done much the same way an overlap is specified

on an input stream:

Input: {

 stream float in;

 int N;

}

Output: {

 stream float out(1,N-1);

}

With this declaration, we are holding back N-1 tokens on the output. The layout of the

data is shown in Figure 11. The light gray tokens represent new values and open space

on the queues, while the dark gray tokens represent old values. The output still produces

granularity tokens from the top of the queue, and the N-1 tokens at the end of the queue

are retained for the next execution of the Apply method.

Figure 11 – Data on queues when output has a hold

Thus, the Apply method for our sliding window average box can be rewritten for an

output stream with hold as follows:

Produced

out in

N = 3

granularity = 5

Retained

Primitive Programming Manual 27

Apply: {

 int g, i;

 for (g=0; g<granularity; g++) {

 out[g+N-1] = 0;

 }

 for (g=0; g<granularity; g++) {

 for (i=0; i<N; i++) {

 out[g+i] += in[g];

 }

 out[g] /= N;

 }

}

In this version of the sliding window average, we are matching input tokens to all

appropriate output tokens because during the next execution all the current input tokens

will be overwritten and lost. The i-th output token is not produced until N input tokens

are used in its calculation.

 Delay

An extension of the hold concept is a delay. If an output queue is delayed by N tokens,

then N zero tokens are inserted at the beginning of the queue. The first token that the

primitive can write to is the N+1-th token. To declare a delay, add another number to the

numbers in parentheses in the declaration of the output:

Input: {

 stream float in;

 int N;

}

Output: {

 stream float out(1,0,N);

}

The delay for the stream out is N; thus, to specify this delay we must also specify values

for the produced amount and hold of the stream – here they are set to the default values of

1 and 0, respectively. Alternatively we can specify the delay as (Delay = N). In this case

the produce amount and hold take there default values of 1 and 0 respectively.

The layout of the queues is shown in Figure 12. The output stream is delayed by two

tokens (shown in white to indicate their value is zero). When the Apply method is

called for the first time, the out pointer points to the first token after the delay, in this

case, the third token on the output stream.

Primitive Programming Manual 28

Figure 12 – Delayed output at the first execution of box

Inputs streams can also have a delay, and the effect is similar to what would happen if the

output that feeds the input were written with a delay. A delayed input is declared in the

same manner as a delayed output:

Input: {

 stream float in(1,0,N);

 int N;

}

Output: {

 stream float out;

}

With this declaration, the input in has a delay of N. The layout of the queues at the first

execution of the box is shown in Figure 13. Zero tokens (colored white) are inserted for

the delay before the input tokens from the upstream box (colored gray) are made

available on the queue.

Figure 13 – Delayed input at the first execution of the box

A box with input delay can initialize the delay tokens to values other than zero in its

Reset method. For example, a box could specify an input delay of N and initialize the

initial N values to the values stored in an input parameter C[N] as follows:

out

in

N = 2

out in

N = 2

Primitive Programming Manual 29

Input: {

 stream float in(1,0,N);

 float C[N];

}

Reset: {

 int i;

 for (i=0; i<N; i++) in[i] = C[i];

}

 Iterate

The iterate parameter specifies how many firings of a primitive are needed to consume

and input token or produce an output token. Its meaning is the opposite of the produce or

consume amount. For example if the consume amount is set to 3 then every firing of the

primitive will consume 3 tokens. If the iterate amount of the input is set to 3 then 3

firings of the primitive are needed to consume 1 token. To declare the iterate amount,

add another number to the numbers in parentheses in the declaration of the output: For

example:

Output: {

 stream float out[R*N][C](1,0,0,N);

}

Or use the named parameter list to specify the iterate as

Output: {

 stream float out[R*N][C](iterate = N);

}

The above specification says that the box must fire N times before it produces one token

on the output. The same syntax is used to specify the iterate on an input. Recall that the

v_s box was described using the produce amount as:

Name: v_s

Type: stream

Input: {

 stream float in[N];

}

Output: {

 inplace stream float out(N)=in;

}

This box can be described using an input iterate value as:

Name: v_s

Primitive Programming Manual 30

Type: stream

Input: {

 stream float in[N](1,0,0,N);

}

Local: {

 int which; /* points to the next index in the input

 vector to be output to the scalar output */

}

Output: {

 stream float out;

}

Reset: {

 which = 0;

}

Apply: {

 int g;

 for (g = 0; g<granularity; g++) {

 out[g] = in[which++];

 if (which == N) {

 which = 0;

 in += N;

 }

 }

}

Note that the granularity of execution does not need to have any relation to the vector size

N. As a result we need to keep track of how many tokens in the input vector have already

been copied to the output. This is the purpose of the which variable. After each N

firings of the granularity loop the which variable is reset to 0 and we advance the input

to the next token.

Since iterate on an input dictates almost the same behavior as produce on an output and

iterate on an output dictates almost the same behavior as consume on an input why

specify a new data flow parameter? The reason is that the iterate parameter used in

conjunction with tiled pointer inputs and outputs allows primitives to be written that

extracts subtiles out of a larger matrix. An example of this is the

Primitive Programming Manual 31

5 Families

Inputs and outputs to primitives can be grouped into families. An example is shown in

Figure 14; a family of source boxes feeds an input to a box named sum that sums all the

sources together.

Figure 14 – A family input to a primitive

The family input to the sum box is declared with a pre-index as follows:

Input: {

 stream float [N]in;

}

The value of N is inherited from the range on the canvas (N will be set to eight in Figure

14). In the discussion of token types in Chapter 3, the queue is always stored as a one-

dimensional array despite the token type or granularity. Different elements in the vector

and different tokens in the stream are accessed through a single pointer. The use of a

family introduces a second pointer.

It is useful to understand why families introduce this second pointer. In the graph in

Figure 14, each ramp0 box has an output out, and it is these queues that are accessed

on the input of sum. The family input to the sum box is an array of pointers to these

Primitive Programming Manual 32

ramp0 output queues; making the data available as a one-dimensional array would

require copying large amounts of data.

The layout of these queues is illustrated in Figure 15.

Figure 15 – Layout of a family input

To get the pointer to the f-th family member of input in, we use the index in[f]. This

family member’s value is a pointer to a queue with granularity tokens. To see this, look

at the Apply method for the sum box below:

Apply: {

 int j, g;

 for (g=0; g<granularity; g++) {

 out[g] = in[0][g];

 }

 for (j=1; j<N; j++) {

 for (g=0; g<granularity; g++) {

 out[g] += in[i][g];

 }

 }

}

In this Apply method, we initialize the output queue by copying over the 0-th family

member of the input. Then, we add the other family members’ queues to the tally. (The

Apply method can be written more efficiently using E_functions as it is done in

embeddable/stream/sum.)

While multiple dimensions of families are possible on the canvas, primitives only allow

one-dimensional family inputs and/or outputs. To use a primitive on a multiple-

dimensional family, one must first use a route box to collapse the multiple dimensions

into one dimension.

in[2] in[0]

in
N = 3

granularity = 5

in[1]

Primitive Programming Manual 33

In the sum box example, all the vectors have the same vector length because they will be

added together. However, this restriction on the vector length of family members is not a

requirement. If a vector is being partitioned into a family of subvectors and the length is

not evenly divided, then the subvectors can be of different lengths. Figure 16 shows such

a scenario: a vector of length 10 is being partitioned into 3 parts; since 3 does not evenly

divide 10, two of the subvectors have length 3 and the other subvector has length 4.

Figure 16 – Partition vector into subvectors of different lengths

To declare this family output of vectors of different lengths, we introduce a range

variable to the family index using the colon (:) notation, and then use that range variable

to define the lengths of the arrays (this index can also be used to compute produce

amounts and consume amounts and any other dataflow parameters). For our vector-

partitioning example, the output is declared as follows:

Input: {

 stream float in[N];

}

Output: {

 stream float [i:M]out[(i < N%M) ? N/M + 1 : N/M];

}

The input vectors have a length N and are partitioned into M parts. We use the variable i

to cover the range 0 to M-1, and the variable i is used to define the size of each array in

the family. A conditional is used: if i is less than N%M, the length is N/M + 1,

otherwise it is N/M. In the example in Figure 16, N is 10 and M is 3; therefore, the first

vector gets N/M+1 = 4 elements, and the rest of the vectors get N/M = 3 elements.

The Apply method must be written to accommodate these lengths. An efficient way to

implement this partitioning is to loop through the first N%M family members, copying

subvectors of length N/M+1, and then to loop through the rest of the family members,

[2]out

in

[1]out

[0]out

Primitive Programming Manual 34

copying subvectors of length N/M. (To view the implementation of this partitioning,

open embeddable/vector/v_part.)

Family members of inputs can also have different array dimensions. To see how this is

implemented, inspect the v_part counterpart embeddable/vector/v_nconcat,

which concatenates a family of input vectors. The inputs and outputs of this box are

declared as follows:

Input: {

 stream float [i:M]in[N[i]];

}

Output: {

 stream float out[sum(N,M)];

}

By using the colon notation, i:M, on an input family dimension, the array sizes of the

family members are defined by a vector N, where N[i] is the size of family member i.

Because the output of this concatenation box has a length equal to the sum of all the input

lengths, the built-in function sum can be used to sum over the family member sizes.

Primitive Programming Manual 35

6 Dynamic and Nondeterministic

In every example discussed in the first five chapters of this manual, the number of tokens

consumed on input queues and produced on output queues is static (known at runtime).

Queues and boxes are not always static.

 Dynamic Queues

A dynamic queue allows you to specify how many tokens are needed in order to execute,

but allows you to actually use only some of these tokens. The number of tokens needed

to execute is called the threshold. For inputs the threshold indicates how many tokens

must be available on the queue for the primitive to fire once (execute at a granularity of

1). The primitive can consume up to granularity*threshold number of tokens when it

executes. For outputs the threshold indicates how much space must be available on the

queue before the primitive can fire once. The primitive can produce any number of

tokens up to granularity*threshold.

To understand dynamic queues, let’s investigate a box that converts variable vector

tokens into scalar tokens. This conversion is shown in Figure 17. The variable vector

input has space allocated for four elements but has an actual length of three (the black

element is empty); three scalar tokens are produced on the output and the unused element

is discarded.

Figure 17 – Conversion from variable vector to scalar

To declare a dynamic output queue with a threshold of Max, we indicate it is a dynamic

stream, as follows:

Input: {

 stream float in[n,Max];

}

Output: {

 dynamic stream float out(Max);

}

The output stream out is a dynamic stream that will produce a maximum of Max tokens

for each input token. This queues threshold is specified in the same way as the produce

amount is specified and if not specified the threshold is takes the default value of 1. In

this conversion, the length stream n is used to determine how many tokens are produced

3 scalar tokens 1 variable vector token

4 elements, 3 used

Primitive Programming Manual 36

on the output. The Apply method merely copies elements from the variable vectors to

tokens on the output stream, looping through the granularity, as follows:

Apply: {

 int g;

 int cnt = 0;

 for (g=0; g<granularity; g++) {

 e_vmov(in,1,out+cnt,1,n[g]);

 cnt += n[g];

 in += Max;

 }

 produce(out,cnt);

}

The variable cnt tallies the number of tokens placed on the output. Because variable

vectors are constructed such that n[g] is never larger than Max, each variable vector

will not create more then Max scalar tokens on the output. After all the elements are

copied over, a call is made to the function produce.

The function void produce(Queue name, int count) informs Gedae how

many output tokens were actually created by the Apply method. This function should

only be called once at the end of the Apply method after all items in the granularity have

been computed.

Dynamic inputs can also be used, using the function void consume(Queue name,

int count) at the end of the Apply method to tell Gedae how many input tokens

should be consumed.

 Nondeterministic Queues

When using nondeterministic queues, there is no guarantee that when the Apply method

is called there will be sufficient tokens on the queues to perform the computation. You

must use built-in functions to determine whether enough space is available (if it is an

output queue) or if enough new tokens are available (if it is an input queue).

The functions and variables that are used to handle nondeterministic queues are shown in

Table 1. There are two options for determining how much space to use on a

nondeterministic queue.

The first option is to use the avail function to query how much space is available on

each nondeterministic queue in the box. This information determines how much space

the amount function should prepare for use. Using the avail function is more flexible

but also less desirable in most cases.

Primitive Programming Manual 37

The second option is to simply call the amount function on each nondeterministic queue

specifying how much space is desired on each queue. If the desired amount of space is

available, then the amount function prepares it for use. If the desired amount is not

available, then the value of the variable queues_readyis set to 0, and this variable

must be used to determine if the computation should be continued. This second option is

advantageous because calls to amount inform Gedae how many tokens are needed on

each input. Thus, if the desired number of tokens is not available the first time, then this

information allows Gedae to avoid calling the Apply method again until it has all the

tokens necessary to successfully execute.

Function Declaration Description

void produce(Queue name,

int cnt);

Indicates at the end of the Apply method that cnt

tokens were created on the output queue

void consume(Queue name,

int cnt);

Indicates at the end of the Apply method that cnt

tokens were used from the input queue

int avail(Queue name); Determines how many tokens are available on the

input or output queue

void amount(Queue name,

int cnt);

Prepares cnt tokens for use on the input or output

queue

int queues_ready; The value is 0, if amount has failed during the

current execution of the Apply method; 1

otherwise

Table 1 – Functions used with dynamic and nondeterministic queues

To investigate nondeterministic queues, consider a box that merges two streams together.

A control stream specifies from which input to take a token. The two streams that are

being merged together must be nondeterministic because the order in which the streams

are merged is determined at runtime through the control stream. If the queues were static

or dynamic, then tokens would have to be available on both inputs before the box would

be able to execute. With nondeterministic queues, however, if one input queue is full and

the control stream says to take tokens from that input, then the box is able to execute

whether or not the other input has tokens.

To declare an input or output as nondeterministic, indicate it is a nondet stream. For

the merge box, we have two nondeterministic streams and a static control stream:

Input: {

 nondet stream float in0;

 nondet stream float in1;

 stream int c;

}

The merge of two streams can either be complete or incomplete. If the merge is

complete, then an output token is produced for each token on the control stream (values

Primitive Programming Manual 38

on the control stream indicate either “copy from in0” or “copy from in1”). In this case,

the output is static, and the number of output tokens is known before runtime. If the

merge is incomplete, then there are more control tokens than output tokens (values on the

control stream indicate either “copy from in0,” “copy from in1,” or “do not produce a

token for this value”). In this case, the output is dynamic. Let’s concentrate on a

complete merge, with a static output stream:

Output: {

 stream float out;

}

To perform the merge, the box examines the control stream and counts how many tokens

are needed on each of the two nondeterministic inputs. Then, it uses these counts to call

the amount function for each input. If the amount function succeeds, then the variable

queues_ready will be set to 1, in which case, the box performs the copy from the

input streams to the output stream; otherwise, it does nothing and waits for the next

execution of the Apply method.

The code for the complete merge of two streams is shown in Figure 18. The local

variable c_examined marks whether the last execution consumed tokens from the

input. If the last execution consumed tokens, the Apply method examines the c input in

order to determine how many tokens to take off the inputs. Variables n0 and n1 are

counters that determine the number of tokens to consume.

After the control stream has been examined, the calls to amount inform Gedae how

many tokens are needed on each input. If these calls to amount are successful, that is, if

the number of tokens needed is available, then the test of queues_ready will allow the

box to copy tokens from the inputs to the output and consume the tokens from the inputs.

If queues_ready is false, then these tokens are consumed during the next execution of

the box.

Note the following procedure used to handle the nondeterministic queues in the complete

merge box:

1. Count the number of tokens needed on each nondeterministic queue

2. Call the amount function to see if that number of tokens is available

3. Test the queues_ready variable to see if the amount functions succeeded,

and the box is ready to execute

4. If the box is ready to execute, perform the data copies and consume data from

the input queues

Primitive Programming Manual 39

Figure 18 –- Nondeterministic queues in a complete merge of two inputs

Primitive Programming Manual 40

Nondeterministic output queues are handled in a similar way to nondeterministic input

queues. The queues must be prepared for use at the beginning of the Apply method, and

then the produce function is called to produce the tokens on the output for downstream

boxes.

If nondeterministic queues are grouped into a family, then each family member is treated

individually. The amount function should be called on each applicable family member,

and then produce or consume should be called on each applicable family member.

To see an example of how to use a nondeterministic family, compare the merge_c box

in Figure 18 to the primitive embeddable/stream/logic/mergef_c, which

performs a complete merge of a family of inputs. The code for the mergef_c is

organized in much the same way as the code for the merge_c. Below is the procedure

used by the mergef_c:

1. Examine the control stream and keep counters, using local array n[], on how

many tokens are needed on each queue in the family

2. Call the amount function on each queue:

for (j=0; j<N; j++) {

 amount(in[j],n[j]);

}

The j-th family member is in[j], and the counter n[j] was used in step 1 to

count how many tokens are needed on that queue

3. If the amount function was successful as tested by the variable

queues_ready, then copy the data to the output and call consume on each

family member:

for (j=0; j<N; j++) consume(in[j],n[j]);

If all of a box’s queues are nondeterministic, then the box can be labeled Type:

nondet (instead of Type: static). Labeling each input and output queue as

nondet is equivalent to changing the Type field to nondet.

Primitive Programming Manual 41

7 Summary of Positional and Named Parameter
Notation

Gedae supports both a position dependent notation and a named parameter notation for

specifying data flow parameters. In the preceding sections only the positional notation is

shown. This notation allows the specification of dataflow parameters by their order in a

parenthesized list. The named parameter notation is more verbose but easier to read as

the user does not need to memorize the position of the parameters to interpret the input or

output data flow specification. For example static outputs have data flow parameters

produce, overlap, delay and iterate. These parameters can be specified as

stream float out(produce = 1, delay = 0, overlap = 5,

iterate =1);

Since the default values of produce = 1, delay = 0, overlap = 0 and iterate = 1 only the

parameters that differ from the default need to be specified. So the above can be

shortened to

stream float in(overlap = 5);

In the position dependent notation the output parameters are given in the order

(produce,overlap,delay,iterate). In this notation the output above could be declared as

stream float out(1,5,0,1);

Since the iterate and delay assume their default values they do not need not be specified.

This shortens the declaration to

stream float out(1,5).

In the position dependent notation we still need to specify the produce amount of 1 even

though it takes its default value – so that the overlap value will appear in position 2.

Inputs are handled similarly to outputs. All the data flow parameters are named as the

input with the exception of produce which for inputs is changed to consume. Thus an

input declaration might be

stream float in(consume = D, overlap = D-1, interate = N);

This would correspond to a position dependent declaration

stream float in(D,D-1,0,N);

Primitive Programming Manual 42

Dynamic streams allow a single data flow parameter, threshold, to be set and

nondeterministic queues allow a single parameter capacity to be set. For dynamic queues

a threshold of N+1 can be set either as

dynamic stream float out(N+1);

Or

dynamic stream float out(threshold = N+1);

For nontdet queues a capacity of C-1 can be set either as

nondet stream float out(C-1);

or

nondet stream float out(capacity = C-1).

Primitive Programming Manual 43

8 Pointer Streams

The goal of pointer streams is to eliminate unnecessary copying of data. Gedae

primitives must fill their output streams and sometimes this filling is just copying the data

from one buffer to the output buffer. Boxes that encapsulate an input device are an

example of a box that does unnecessary copies. By their nature input devices often

produce the highest bandwidth data in the system and extra copies at the input device are

the most expensive.

The copying problem results from the fact that Gedae primitives execute out of memory

specially allocated for the primitives called schedule memory. A primitive will process

its inputs directly out of schedule memory and dump its results directly into schedule

memory without copying. Thus – within a static schedule – dataflow is implemented

without unnecessary copies; however, for an input device the input is often initially

written to a buffer available in a buffer area outside of schedule memory. This need for

an external buffer is a function of how the input device drivers were written and is

outside of the control of Gedae. A double buffering scheme is often used by the input

device so that data can be put into one buffer by the device while being processed from

another buffer. A Gedae primitive encapsulating the input device would have to copy the

data out of the filled input device buffers into Gedae schedule memory.

Instead of copying the data from an external buffer to schedule memory – a primitive

with a pointer output sets the output to point to the external buffer. To express this

situation a new keyword, pointer, can be used to modify a stream output.

For example a stream output can be declared as:

pointer stream float out[N];

The keyword pointer indicates that schedule memory will not be allocated for the

destination boxes but instead the memory will be provided directly by the source

primitive. To use pointers several problems need to be solved. First since each token is a

pointer and need not be contiguous with the next pointer – pointer boxes must fire at a

granularity of 1. Gedae detects at pointer boxes at compile time and subschedules them

if necessary so that they run at a granularity of 1.

A second problem is that since the pointer may need to be reused at a later time there

needs to be a way to signal when the downstream primitives are finished using the

pointer. This is handled by registering a release method when the output pointer is set.

A new built in Gedae function , set_ptr, has been provided that allows the primitive

Apply method to set the output to the external pointer and register a release function.

Function set_ptr takes four arguments:

set_ptr(<output_stream>,void *src_ptr,

 void (*release)(void *, void *, int), void *handle)

Primitive Programming Manual 44

where:

 <output_stream> is the name (without quotes) of the output pointer stream

 src_ptr is the pointer to which the output stream is to be set

 release is the function pointer that will release the src_ptr when all

primitives using the pointer have completed.

 handle is the a handle passed as the second parameter to release to provide

any information in addition to the pointer needed to release resources

The function release, which should be defined in the primitives Include section takes

three parameters:

release(void *src_ptr, void *handle, int n)

where:

 src_ptr is the second parameter passed to set_ptr

 handle is the fourth parameter passed to set_ptr

 n is the number of tokens in the pointer which will be the granularity of the box

calling set_ptr times the produce amount of the output stream.

The release function is called by the primitive internal/release which is

automatically inserted by the Gedae scheduler. The release primitive is scheduled to

execute the release function after the last primitive using the pointer executes. If no

release function is required set_ptr can either be called with a release function of 0 or

better called with just the first two parameters. If set_ptr is called with just the first

two parameters the internal/release primitive is not added to the graph.

In addition to the set_ptr function for static outputs, a second function –

produce_ptr – was developed for use with dynamic outputs. The produce_ptr

function is identical to set_ptr except for an additional parameter indicating the

number of samples that need to be produced. Function produce_ptr is used on

outputs of type pointer stream dynamic or pointer stream nondet and

combines the function of set_ptr and produce. The prototype for produce_ptr

is:

produce_ptr(<output_stream>,void *src_ptr, int tokens

 void (*release)(void *, void *, int), void *handle)

where:

 <output_stream> is the name (without quotes) of the output pointer stream

 src_ptr is the pointer to which the output stream is to be set

Primitive Programming Manual 45

 tokens is the number of tokens to be produced

 release is the function pointer that will release the src_ptr when all

primitives using the pointer have completed.

 handle is the a handle passed as the second parameter to release to provide

any information in addition to the pointer needed to release resources

Note if an output pointer stream is to be set to point to input memory it is necessary to

use the inplace modifier as described in the section on Inplace Output Pointer Streams.

If the inplace modifier is not used Gedae does not know that the input memory is still in

use after the primitive fires and may assign other primitive outputs to this memory area.

This type of problem causes the primitives using the pointer output data to operate on

data that has been corrupted.

Primitive Programming Manual 46

9 Inplace Streams

As previously discussed Gedae allows a primitive to share input and output address space

via the word inplace in the Output field of the box. In this section we describe some

variations of the inplace stream concept.

 Fixed Inplace Streams

We previously described the Gedae add primitive whose output is declared to be inplace

with it’s a input. For completeness we repeat the discussion here. This primitive can be

written as:

Name: add

Type: static

Input: {

 stream float a;

 stream float b;

}

Output: {

 inplace stream float out=a;

}

Apply: {

 int g;

 for (g = 0; g<granularity; g++) {

 a[g] = a[g] + b[g];

 }

}

Note that since the output out is declared to be inplace with a that out does not appear

in the Apply method. Instead the Apply method pointer a is the pointer to both the

input stream a and the output stream out.

 Optional Inplace Streams

Inplace streams can save memory but are occasionally cause inefficiencies. For example

if a primitive output is connected to two inplace inputs then an internal/copy primitive

must be automatically added by Gedae in front of one of these inputs. The copy

eliminates the memory savings provided by the inplace stream and causes extra overhead.

To avoid this problem streams can be declared to be optionally inplace with one or more

streams. The notation for this is illustrated in the following example:

Name: add

Type: static

Primitive Programming Manual 47

Input: {

 stream float a;

 stream float b;

}

Output: {

 inplace stream float out={a,b};

}

Apply: {

 int g;

 for (g = 0; g<granularity; g++) {

 out[g] = a[g] + b[g];

 }

}

In the above example out is declared to be optionally inplace with either a or b. Since

we don’t know if out will be inplace with one or none of these inputs the stream out

must appear explicitly in the Apply method. Gedae will attempt to make out inplace

with a but if a copy box is needed as a result it will then attempt to make out inplace

with b. If a copy box is still needed Gedae will make out out-of-place with both a and

b.

 Inplace Output Pointer Streams

An output pointer stream can be made inplace with an input stream to eliminate copying

of data from the input to the output. This is particularly useful when the output is a

pointer to a section within an input token of the input stream as copying the data from the

input to the output is avoided. A good example of a primitive that can benefit from

using an inplace pointer output is the v_selsub primitive that selects a subvector out of a

vector based on an integer scalar input stream. A version not using an inplace pointer

stream is:

Name: v_selsub

Type: static

Input: {

 stream float in[M];

 stream int offset;

 int N;

}

Output: {

 stream float out[N];

}

Apply: {

 int 9,g;

 for (g=0; g< granularity;g++) {

 for (i=0; i<N; i++) {

Primitive Programming Manual 48

 out[i] = in[i+offset[i]];

 }

 in += M; out += N;

 }

}

Using an inplace pointer stream avoids the copy.

Name: v_selsub

Type: static

Input: {

 stream float in[M];

 stream int offset;

 int N;

}

Output: {

 inplace pointer stream float out[N] = in;

}

Apply: {

 forward(out,in,in+offset[0],1);

}

The setting of the output pointer to the input pointer is handled by the forward

function. The forward function has the prototype

forward(<output_stream>,<input_stream>,void *input_ptr, int

ntokens);

 where

 <output_stream> is the name (without quotes) of the output pointer stream

 <input_stream> is the name (without quotes) of the input stream

 input_ptr is the pointer that the output stream is to be set to.

 ntokens is the number of tokens to be produced into the output stream.

Note in the example the second parameter in is the name of the handle to the input

stream and in the third parameter in is the pointer to the beginning of the input stream

whose handle is in. The example could just as well have been:

float *a = in+offset[0];

forward(out,in,a,1);

The second parameter must be in but the third parameter can be any valid pointer that

points offset from the input pointer in. The only requirement on the pointer is that the

output token must be completely within the input token. So for the above example we

must have:

Primitive Programming Manual 49

 in <= a < a+N <= in+M.

As with non-inplace pointer streams, the Gedae compiler guarantees that the primitive

producing the pointer stream fires at a granularity of 1. As a result for static pointer

streams the parameter ntokens is redundant as the number of tokens must be the static

produce amount of the output. For example if the output is declared as:

inplace pointer stream out[N](4) = in;

Then because the produce amount is 4 the forward function must be

forward(out,in,in_ptr,4);

However pointer streams can be dyamic in which case the number of tokens passed to

forward is determined at runtime. For example if the pointer stream output is declared

as:

dynamic inplace pointer stream out[N](4) = in;

Then the number of tokens passed to forward can be any value from 0 to 4 as calculated

by the Apply method. Note that the produce function should not be called on dynamic

inplace pointer streams as the produce amount is set by the call to forward. It is also

legal for inplace pointer streams to be inplace with dynamic or nondet input streams.

For outputs that are inplace with a single input the first parameter is also redundant.

However pointer outputs can be declared to be inplace with multiple inputs. For example

Input: {

 stream float a[N];

 stream float b[N];

 stream int c;

}

Output: {

 inplace pointer stream out[N] = a,b;

}

Apply: {

 if (*c) {

 forward(out,a,a,1);

 } else {

 forward(out,b,b,1);

 }

}

Again note that the second parameter indicates the name of the input to be forwarded and

the third parameter indicates the pointer to be forwarded. In this case since the pointer is

Primitive Programming Manual 50

just the beginning of the input buffer the names passed to forward for the second and

third parameters are the same, but there meanings are different.

Note that the list a,b in the inplace declaration indicates that out can be inplace with

either a or b and the choice will be made dynamically at runtime by the primitives

Apply method. In the above example the primitive forwards either a or b to the output

depending on the value of the condition variable c.

An inplace pointer stream may be inplace with a family of inputs. I this case the

primitive will forward a pointer from one of the family members to the output on each

execution of the Apply method. The family member will be dynamically chosen at

runtime. For example:

Input: {

 stream float [F]in;

 stream int c;

}

Output: {

 inplace pointer stream out[N] = in;

}

Apply: {

 forward(out,in[*c],in[*c],1);

}

Multiple inplace pointers may be inplace with the same input. This feature can be used to

partition a single token into multiple output tokens. For example a matrix can be

partitioned into multiple submatricies as:

Name: m_rpart

Type: static

Input: {

 stream float in[R][C];

}

Output: {

 inplace pointer stream float [F]out[R/F][C] = in;

}

Apply: {

 int f;

 for (f=0; f<F; f++) {

 forward(out[f],in,in+f*R*C/F,1);

 }

}

Limitation: Currently Gedae does not check that the multiple outputs do not overlap. If

they do it is currently up to the user to insure that the primitive following the overlapping

data do not modify the data. For example an inplace primitive with an Apply method that

Primitive Programming Manual 51

modifies the data should not immediately follow a primitive that partitions the data into

overlapping outputs.

Inplace pointer outputs are assumed to not be corrupting. That is the values that the

pointers point to should not be modified. Gedae uses this assumption to avoid adding

copy primitives to fix inplace problems. Thus inplace pointer outputs should only be

used to decompose data but not modify it. Modifying the actual values is an error that

Gedae will not detect and can cause unpredictable results.

Note if an output pointer stream is to be set to point to input memory it is necessary to

use the inplace modifier. If the inplace modifier is not used Gedae does not know that the

input memory is still in use after the primitive fires and may assign other primitive

outputs to this memory area. This type of problem causes the primitives using the pointer

output data to operate on data that has been corrupted.

 Inplace Input Pointer Streams

A user may declare an input to be a pointer stream and that pointer stream can be inplace

with an output stream. The primitive Apply method can then set the input pointer to

point to a memory area within the output stream. For example a primitive that is the

opposite of the m_rpart is the m_rnconcat. This primitive concatenates a family of input

matricies into a single output matrix.

Name: m_rnconcat

Type: static

Input: {

 pointer stream float [f:F]in[R[f]][C];

}

Output: {

 inplace stream float out[sum(R,F)][C] = in;

}

Apply: {

 int f;

 int Rsum = 0;

 for (f=0; f<F; f++) {

 set_ptr(in[f],out+Rsum*C);

 Rsum += R[f];

 }

}

The primitive uses the set_ptr function with just two variables to set the input stream

to the output pointer. In this context the set_ptr function has the prototype

set_ptr(<input_stream>,void *output_ptr)

Primitive Programming Manual 52

Where

<input_stream> is the name of the input stream whose pointer value is being set.

output_ptr is the pointer within the output memory to which the input is being set.

Unlike every other primitive type in Gedae a primitive with an input pointer must fire

before the primitive driving its input. This ordering is necessary so the input pointer

primitive can set the pointer of the output that is driving it. Currently – to avoid circular

ordering problems a primitive with an input pointer must have all its stream inputs be

pointers.

As with inplace pointer outputs, pointer inputs inplace with an output are assumed to be

non-corrupting. It is an error – that Gedae will not detect – for a primitive with an

inplace input to modify the values of the data being pointed to. Adding such a primitive

will cause unpredictable results.

 Inplace Tiled Pointer Streams

A tiled stream may also be declared to be an inplace pointer. In fact this is one of the

main uses of the tiled stream notation. An example is the mt_cpartN primitive

Name: mt_cpartN

Type: stream

Input: {

 stream float in[Rs:R][Cs:C](iterate = N);

 int N;

}

Local: {

 int which;

}

Output: {

 inplace pointer stream float out[Rs:R][Cs/N:C] = in;

}

Start: {

 which = 0;

}

Apply: {

 forward(out,in,in+which*(Cs/N),1);

 which++;

 if (which == N) {

 which = 0;

 }

Primitive Programming Manual 53

}

This primitive partitions the input matrix column wise into N equal sized pieces and time

multiplexes them onto the output stream. Note that because the partitioning is column

wise we must use a tiled stream if the operation is to be inplace. Another example is the

mt_rpart which is the tiled version of the m_rpart described earlier. The mt_rpart is:

Name: mt_rpart

Type: static

Input: {

 stream float in[Rs:R][Cs:C];

}

Output: {

 inplace pointer stream float [F]out[Rs/F:R][Cs:C] = in;

}

Apply: {

 int f;

 for (f=0; f<F; f++) {

 forward(out[f],in,in+f*(Rs/F)*C,1);

 }

}

 Setting of Tiled Stream Dimensions

The following rules dictate how dimensions are set for tiled streams.

 When a tiled stream is connected to a tiled stream then the tiled and normal

dimensions of both must be equal. This is the obvious rule for propagating

dimensions.

 When a non-tiled stream is connected to a tiled stream then the non-tiled

dimensions are equal to the tiled streams tiled dimensions. This rule makes sense

as the only values that are valid in a tiled stream are the tiled values. Gedae

automatically inserts a tiled to non-tiled conversion primitive if the tiled and

normal dimensions are not equal.

 When a non-tiled stream is connected to a non-pointer tiled stream then the tiled

stream’s normal dimensions must be equal to the non-tiled stream dimensions. In

this case the non-tiled stream dictates the matrix size in which the tiled stream is

embedded.

 When a non-tiled output stream is not connected then the normal dimension is set

to the tiled dimension. This is really the same thing that would occur if the tiled

streams output was connected to a non-tiled stream.

 If a pointer tiled stream is connected to a tiled stream then the pointer streams

normal dimension is only equal to the tiled streams dimension if there is not a

contradiction with one of the other rules.

Primitive Programming Manual 54

 An input tiled stream’s tiled dimensions are set by the source the tiled stream is

connected to. (This is the same as the way normal dimensions are set for non-

tiled streams).

 An output tiled streams tiled dimensions are set by equations that are in terms of

input dimensions, family indices and input parameters. (This is the same as the

way normal dimensions are set for non-tiled streams).

 Both input and output tiled stream normal dimensions are set by virtue of what

they are connected to. Neither may be set by equations based on parameters.

 Inplace tiled streams must have the same normal dimension names.

The rules leaves open the possibility that a tiled stream pointer normal dimension is not

equal to the non-tiled streams dimension. This is an important case that Gedae handles

by automatically inserting a tiled-to-nontiled conversion primitive. A typical graph using

tiled streams connects a source non-tiled stream to a series of primitives that have tiled

inputs and pointer tiled outputs. The series of boxes decomposes the input matrix into

smaller and smaller tiles. The last pointer box in the chain is connected to a non-tiled

series of primitives that does the actual processing of the tile. The last non-tiled primitive

output is connected to a tiled pointer input that inserts the tiles into the large matrix. A

series of tiled boxes with inplace pointer inputs builds larger and larger subtiles. The

large matrix size is dictated by the calculated tile size of the last tiled box in the chain.

Primitive Programming Manual 55

10 Unmapped Memory

Memory that a processor can directly dereference is called mapped memory. For

example if float *out is a mapped memory pointer then the expression *out is valid and

will return the value of out. Memory that can only be accessed by copying it using a

functional interface is called unmapped memory.

Some processors provide large areas of unmapped memory. For example the Cell/B.E.

allows each SPU to access only 256kbytes of mapped memory but allows to many giga-

bytes of unmapped memory. In Gedae some BSPs declare different unmapped memory

types and Gedae provides generic BSP functions for moving data between unmapped and

mapped memory. A primitive can declare that one or more of its inputs or outputs are

unmapped memory using the unmapped keyword as for example:

Name: mu_noop

Type: stream

Input: {

 stream unmapped float in[R][C];

}

Output: {

 inplace stream unmapped float out[R][C] = in;

}

The above box declares its inputs and outputs to be unmapped. This declaration is

progated through all non-corrupting inplace primitives that the mu_noop input/outputs

are connected to. Gedae stops propagating the unmapped property when it encounters a

primitive I/O that is not inplace or that is corrupting. In that case Gedae automatically

inserts a primitive to move data from unmapped to mapped memory. If the unmapped

memory is tiled Gedae automatically inserts a primitive that moves the data from a

subtile of the unmapped memory into mapped memory.

Below is an example taken from the internal/getu primitive that gedae automatically

inserts to move data between non-tiled unmapped to mapped memory. The e_getu

function – which is part of the BSP for each processor that supplies unmapped memory –

is used to move data beween unmapped and mapped memory.

Name: getu

Type: stream

Input: {

 stream unmapped void in;

}

Output: {

 stream void out;

}

Include: {

Primitive Programming Manual 56

#include <e_getu.h>

}

Apply: {

 e_getu(out,in,size(out));

}

Users can write there own primitives that have unmapped inputs/outputs and mapped

outputs/inputs and that move data between these inputs and outputs. A complete set of

unmapped to mapped data transfer functions is described in the Gedae Primitive

Function Reference Manual.

Primitive Programming Manual 57

11 Persistent Memory
Declaring an output stream persistent reserves the memory so that the data written to it in

one execution of a schedule remains valid for successive executions. Only the primitive

that declares the memory area persistent and any destination primitives (including inplace

destinations that modify the memory area) can have access to it. An output stream can

be declared persistent using the persistent keyword as:

Output: {

 persistent stream float X[N];

}

This declaration reserves a memory area of size N*sizeof(float) bytes that will

only be available to the destination primitives. A persistent output acts much like a

primitive Local except that it can be shared and modified by multiple primitives. A

persistent output should only be part of a primitive that executes with a granularity of 1.

Primitive Programming Manual 58

12 Segmented Data Flow

TBD

 Segmented Outputs

 Segmented Parameters

 Exclusive Outputs

 External State

Primitive Programming Manual 59

13 Runlength Encoded Streams

Runlength encoded streams allow you to specify how long, in number of tokens, a

stream keeps its value. They are useful if the value of a variable rarely changes, for

example, if it changes only during the transition between modes. If a stream has values

{31, 31, 31, 42, 42, 27, 27, 27, 27, 27, 27, 27, …}, then the runlength encoded stream is

{(31,3), (42,2), {27,7), …}.

Let’s look at an example where a standard scalar stream is added to a runlength encoded

stream. The inputs and outputs are declared as:

Input: {

 stream float in;

 stream encoded float k;

}

Output: {

 inplace stream float out=in;

}

where k is the runlength encoded parameter. To decode this special parameter, use the

void *decode(void *q,int *avail,int amount) function. This function

takes input parameters q and amount. The parameter q is the encoded input queue,

and the parameter amount is the maximum number of tokens to be read. The function

returns a pointer to the value of the token and returns the token’s runlength in the

parameter avail.

To see how this function is used, let’s look at the Apply method for adding these two

inputs together.

Apply: {

 int g;

 for (g=0; g<granularity;) {

 int n;

 float nextk = *(float *)decode(k,&n,granularity-g);

 e_vsadd(in+g,1,nextk,in+g,1,n);

 g += n;

 }

}

The decode function is called in each iteration of the for-loop. The variable g keeps

account of how many tokens have been used; thus, granularity-g tokens are

remaining to be computed during this call of the Apply method. The call to decode

returns the next value on the k stream along with its runlength (at most,

granularity-g). With the value of k and its runlength, we can call e_vsadd to

perform the addition.

Primitive Programming Manual 60

The function void encode(void *output,void *next_value,int n)

encodes a runlength encoded stream. To see how the encode function is used, let’s

look at the box that turns a standard scalar stream into a runlength encoded stream, that

is, embeddable/stream/encode. In the example below, the input is a scalar

stream, and the output is a runlength encoded stream:

Input: {

 stream float in;

}

Output: {

 stream encoded float out;

}

To perform the transformation, test to see if the new token is the same as the previous one

on the queue. If they are different, then the previous token is encoded on the runlength

encoded output. If they are the same, then a counter is incremented, and the next token is

considered. At the end of the Apply method, the current value is encoded with the

current value of the counter (the counter is not retained between calls to the Apply

method). Below is the full Apply method:

Apply: {

 int g;

 float nextout = in[0];

 int count = 1;

 for (g=1; g<granularity; g++) {

 if (in[g] == in[g-1]) count++;

 else {

 encode(out,&nextout,count);

 nextout = in[g];

 count = 1;

 }

 }

 encode(out,&nextout,count);

}

Primitive Programming Manual 61

14 Cyclic Boxes

All the boxes described up to this point are of Type: static. This type of box – with

dynamic and nondeterministic queues, or static queues with fixed produce, consume,

overlap and hold, etc. – provides you with a great deal of flexibility and power.

However, there are times when the static implementation of an operation is possible but

inefficient.

One example of when the static box implementation is naturally inefficient is when

produce and consume amounts must be set high in order to accommodate a redistribution

of data. For example, a commonly used box in the Gedae library is the mux box

(abbreviation for Multiplexer). A mux box receives a family of tokens and turns them

into a single output stream. This operation is illustrated in Figure 19: a family of three

input streams is received, and the tokens are placed sequentially on the output stream.

Figure 19 – The operation of a mux box

Implementing the mux box for a floating-point stream is simple:

Name: mux

Type: static

Input: {

 stream float [M]in;

}

Output: {

 stream float out(M);

}

Include: {

#include <e_vmov.h>

}

Apply: {

 int j;

 for (j=0; j<M; j++)

 e_vmov(in[j],1,out+j,M,granularity);

}

The input stream is a family of size M; therefore, the output stream should have a produce

amount of M. In the Apply method, granularity tokens are moved from family

member j to the correct place on the output using a stride of M.

[2]in [1]in [0]in

out

Primitive Programming Manual 62

The above implementation of a mux box is short and elegant. However, it places a

requirement on the input stream that each family member must have granularity

tokens present in order for any tokens to be produced on the output. The nature of this

inefficiency is in the latency of the box: if family member 0 quickly provides a token for

consumption, but family member 1 must finish a more lengthy computation before

providing a token, then the mux box will wait for family member 1 before member 0’s

token can be copied to the output stream.

If a latency of this sort is an issue, then cyclic boxes can be used to create a more

efficient implementation. Cyclic boxes are not static boxes; they have their own type,

Type: cyclic. They also have two new methods that static boxes do not have. Let’s

re-implement the above mux box as a cyclic box.

A cyclic box is so named because it cycles through several states. For a mux box, the

states can be described by what input token was last copied to the output. When the box

copies a token from family member 0 to the output, the next action is to copy family

member 1’s token to the output. The state after copying family member 0 is different

than the state after copying family member 42. After copying family member 42, the

next action will be to copy family member 43’s token.

Thus, for a mux box, the number of states is the same as the number of family members.

To specify the number of states, we must include a Length method in our cyclic box.

The Length method returns the number of states. If there are M family members, then

the Length method is:

Length: {

 return M;

}

Now that the length of the cycle has been defined, we must create the input and output

declarations so that Gedae knows how many tokens are produced in each state.

In our static version of the mux box, each time the box executes, it produces G*M tokens

on the output (where M is the family size and G is the granularity). If there are four

family members on the input stream, then G tokens are consumed on each input family

member, or, in other words, {G, G, G, G} tokens are consumed. With a cyclic box, this

consumption and production of tokens is broken into stages. For a mux box with a

family of size four, the stages are:

0. {0, 0, 0, 0} tokens have been consumed, 0 token has been produced,

1. {1, 0, 0, 0} tokens have been consumed, 1 token has been produced,

2. {1, 1, 0, 0} tokens have been consumed, 2 tokens have been produced,

3. {1, 1, 1, 0} tokens have been consumed, 3 tokens have been produced,

4. {1, 1, 1, 1} tokens have been consumed, 4 tokens have been produced.

Primitive Programming Manual 63

The M-element vector defines at each stage how many tokens have been consumed in the

cycle. This vector is used to specify the consume amount for the family input of the mux

box – the consume amount of the i-th family member is element i of this vector.

Study the previous four-member example to see how this vector defines the consume

amount of the input. At stage 2, the first two inputs have had tokens consumed, but the

second two inputs are not required to have any tokens available for consumption. The

latter two inputs, during this stage, have a consume amount of 0; they are not required to

have any tokens. Likewise the first two inputs, during this stage, have a consume amount

of 1; they must provide a token for consumption by this stage in the cycle.

To form this vector and declare the input with its consume amount set to the vector,

declare a local vector to store the consume amounts, and then set its values in the Cycle

method. If the declaration int N[M]; is added to the Local section of the box (where

M is the family size of the input), the following Cycle method will construct the N

vector:

Cycle: {

 int i;

 for (i=0; i<M; i++) {

 N[i] = (firing > i) ? 1 : 0;

 }

}

The Cycle method uses a built-in variable firing to specify which stage of the cycle

its calculation relates to. When firing=0, N[]={0, 0, 0, 0}, when firing=1,

N[]={1, 0, 0, 0}, etc. With this Cycle method specified, the family input is declared

as:

Input: {

 stream float [i:M]in(N[i]);

}

Family member i has consume amount N[i], and N[i] has a different value for each

stage in the cycle.

Now that the input has been declared, the output must also be declared in a special

manner for cyclic boxes. In the static version of the mux box, the produce amount of the

output is the same as the family size. In the cyclic version of the box, the produce

amount is the sum of the N vector for that stage. The N vector, as described above,

specifies how many tokens are consumed on each input up to that stage in the cycle.

Each token consumed is produced on the sole output stream; thus, the number of output

tokens produced up to that stage in the cycle is the sum of the N vector for that stage.

Primitive Programming Manual 64

To specify the produce amount for the output, add a declaration for int Sum; to the

Local section of the box, and then extend the Cycle method to tally the N vector in the

Sum variable, as follows:

Cycle: {

 int i;

 Sum = 0;

 for (i=0; i<M; i++) {

 N[i] = (firing > i) ? 1 : 0;

 Sum += N[i];

 }

}

In actuality, due to the behavior of the mux box, the Sum is the value of the variable

firing. With the produce amount of the output specified in the Cycle method, the

output stream is declared as:

Output: {

 stream float out(Sum);

}

The value of Sum is different for each stage in the cycle; in fact, Sum increments between

stages as each stage adds another token to the output.

Now that the input and output streams have been declared, the Apply method can be

implemented. Like static boxes, cyclic boxes have Apply methods and must be written

to process all the tokens on the queues. The number of tokens is defined by the

granularity variable.

The Apply method must be written to duplicate the state behavior of the Cycle

method. In the Apply method for the cyclic mux box, we will use the local variable

where to specify which family member to read from first. The declaration int

where; is added to the Local section of the box, and a Reset method is added to

initialize the variable like it would be for a static box.

The Reset method is:

Reset: {

 where = 0;

}

Primitive Programming Manual 65

The Apply method is:

Apply: {

 int j;

 for (j=0; j<M; j++) {

 int k = where + j;

 int len = (granularity + M – j – 1)/M;

 if (k >= M) k -= M;

 e_vmov(in[k],1,out+j,M,len);

 }

 where = (where + granularity) % M;

}

When the Apply method is called, we loop through each family member of the input,

starting at the member pointed to by where. For each family member, the number of

tokens to copy is calculated, and then the copy is performed using a stride of M, the

family size. Finally, the value of where is updated in preparation for the next execution

of the box. The full implementation is shown in Figure 20.

Primitive Programming Manual 66

Figure 20 – The implementation of the mux box

Primitive Programming Manual 67

15 Eval and Trigger Boxes

Streams are at the heart of a Gedae graph. All box types discussed in previous chapters

must have a stream. Static, nondet, and cyclic boxes cannot be written solely to use

parameter inputs and outputs. If a box is needed that has only parameter inputs and

outputs, then an eval or trigger box must be used. However, these boxes run only on the

host; they cannot be mapped to other processors as they are only intended to simplify the

process of calculating parameters.

Some parameter calculations are implemented entirely on the canvas. For example, in

Figure 21, vectors a[] and b[] are available on the canvas. If we wish to add these two

vectors together, then we add a declaration of a new vector c[], and use the “+” operator

to add the two vectors together.

Figure 21 – Some operations are implemented on the canvas

Most elementwise arithmetic and basic math is done on the canvas. However, if a more

complicated algorithm needs to be done on parameter data, then it cannot be done on the

canvas via the declaration. For example, if the Fast Fourier Transform needs to be done

on a parameter vector, then there is no built-in FFT function that can be called in the data

declaration. Another example is the sum of the squares of the vector elements. In Figure

21, if the sum of squares of b[] needs to be calculated for a parameter input to a box,

then we could write out the full equation by declaring a data element b_ssq =

b[0]*b[0] + b[1]*b[1] + b[2]*b[2] + b[3]*b[3]; however, it would be

much more convenient if the sum could be calculated for any vector of any length.

Primitive Programming Manual 68

 Eval Boxes

To perform a complex parameter calculation such as summing the squares of elements of

an input vector, a box of Type: eval should be used. Eval boxes have parameter

inputs and parameter outputs; the Input and Output sections of the box will be similar

to those of static boxes, but only parameters will be included. The boxes do not have

granularities, Apply methods, or Reset methods because they only act on one set of

input values. Instead, an eval box has an Eval method.

For a box that calculates the sum of a vector’s elements, the input is a vector and the

output is a scalar. These variables are declared as:

Input: {

 float In[N];

}

Output: {

 float Out;

}

If the parameters have default values, then an Init method (similar to those for static

boxes) can be used. The Init method is not used for this sum box. All that is needed is

the Eval method that calculates the sum as shown in Figure 22.

Figure 22 – Implementation of parameter sum of vector elements squared

Primitive Programming Manual 69

 Trigger Boxes

Trigger boxes are an extension of eval boxes that allow you to control the sequence of

execution. When eval boxes are used the outputs are always up-to-date with respect to the

inputs; if an input value changes, then the output value is recalculated. Trigger boxes

give you more control over when and how the output value is recalculated.

The eval box for summing a vector’s elements squared in the previous section will

recalculate the output value whenever the value of the input changes. If a change to the

input does not necessarily result in a change to the output, then the box should have

Type: trigger. Trigger boxes do not have Apply methods or Eval methods; they

have Trigger methods. (Trigger Boxes can also have Reset methods, Init

methods, Local methods, Destroy methods, Save methods, and Restore methods.)

To change the V_Sesq box in the previous section to a trigger box, three changes need

to be made. First, the Type field must be changed to trigger. Second, the input

parameter must be declared as a trigger:

Input: {

 trigger float in[N];

}

Trigger boxes can have both trigger and non-trigger inputs, but only changes to trigger

inputs will cause the Trigger method to be called. Outputs are not declared as triggers.

The third change is that the output Out must be pushed When an output is pushed, other

trigger and eval boxes will receive the output’s updated value. The push function

doesn’t return until the effect of the push (including calling of other trigger boxes which

in turn may push variables) has finished propagating through the graph. The output Out

is pushed by simply calling push(Out).

With these three changes, the altered V_Sesq box can be used but performs the same

operation as the original eval box. To utilize the functionality of triggers, put a condition

on whether the output is pushed. For example, to push the output value only if the sum of

the vector’s elements squared is greater than one, replace the call to push(Out) in the

Trigger method with the following:

if (Out > 1) push(Out);

If the new value of the sum is not greater than one, then the old value of Out is retained.

The capability of conditionally pushing parameters is useful for implementing state

machine-like functionality in a graph.

The Trigger method is called when a new value is available on a trigger input. If

multiple inputs to a box are triggers, then it could be useful to know which trigger input

Primitive Programming Manual 70

has received a new value. The function int dirty(trigger input) can be called

inside the Trigger method to determine if a trigger input has received a new value.

The push function takes any number of inputs to allow multiple outputs to be pushed

simultaneously. For example, if the outputs Out0, Out1, and Out2 are to be pushed

simultaneously, then push(Out0, Out1, Out2) will push all three outputs. There

is no requirement that all output parameters be pushed simultaneously. The push

function can be called numerous times in the same box, allowing different outputs to be

pushed under different conditions.

Static boxes can also have parameter outputs. The push function is used in the same

manner as it is used in trigger boxes to inform other boxes of updated values.

 GUI Trigger Boxes

Trigger boxes are useful in constructing GUIs. The GUI library supplied with Gedae is

constructed mostly from trigger boxes. To accommodate their use in constructing GUIs,

trigger boxes have several methods that other types of boxes do not. While these

methods are useful in GUI trigger boxes, they can be used in any trigger box.

Because GUIs create shells that reside in memory, Destroy methods are available for use

in trigger boxes. For example, if a shell is created in the GUI box, a Local section

variable shell can be declared to store the variable, and a suitable Destroy method may

be:

Destroy: {

 if (shell) {

 XtDestroyWidget(shell);

 shell = 0;

 }

}

Similarly, any memory or other resources that are allocated can be freed here.

Save and Restore methods are also specific to trigger boxes. In the display boxes

included in the Gedae library many internal parameters, such as the location of the

display on the screen and the size of the display, are saved in the graph’s parameter file.

The saving of these parameters allows the displays to look the same each time the graph

is loaded and run. To be able to save these parameters (without including them as inputs

to the box), Save and Restore methods are used.

Utility functions are available for saving and restoring each required data type (int, float,

double, and string) as shown in Table 2. If the width, height, x location, and y location of

Primitive Programming Manual 71

a display are to be stored in the parameter file, declare variables for each item in the

Local section of the box, then set the Save and Restore method as:

Save: {

 save_int(x);

 save_int(y);

 save_int(width);

 save_int(height);

}

Restore: {

 restore_int(x);

 restore_int(y);

 restore_int(width);

 restore_int(height);

}

Type Save Restore

int save_int(int x); restore_int(int *x);

float save_float(float x); restore_float(float *x);

double save_double(double x); restore_double(double *x);

string save_string(char *s); restore_string(char **s);

Table 2 – Functions for saving and restoring values in the parameter file

The order that the variables are saved and restored in should be the same, that is, if x is

saved before y, then x should be restored before y. These methods can contain any C-

code, so it is possible to retrieve these values from the GUI structures before saving them

in the Save method, and it is possible to manipulate these values and copy them to local

variables after retrieving them in the Restore method.

The final type of method specific to trigger boxes is the Callback method. GUI buttons

and other objects have callback functions that define what happens when certain actions

are performed on the object. For example, a button will have a callback function that is

performed when the button is pressed. To define a callback function in a trigger box, you

can define a Callback method. For example, assume a GUI has two buttons and each

time button 1 is pressed, the GUI prints to the terminal “Button 1 was pressed” and each

time button 2 is pressed, the GUI prints “Button 2 was pressed”. The Callback method is:

Callback: {

 int i = (int)calldata;

 printf(“Button %d was pressed\n”,i);

}

This method creates a callback function void Callback(Widget self,void

*calldata) that can be called from any other method in the box. Usually this

function will be used with the GUI function XtAddCallback to associate the Callback

Primitive Programming Manual 72

method with a certain button or action. Unlike other methods, the Callback method can

have any name; any method or field that has a name not known to Gedae is assumed to be

a Callback method.

Primitive Programming Manual 73

16 Typedef Boxes

In Chapter 2, the possible data types of Gedae streams are discussed, including the

capability to create streams of custom structures. Gedae also includes the capability to

create structures of streams. Such structures are made using typedef boxes.

Aside from having Type: typedef and a Name field, a typedef box only has one

other field called the Input field. Each stream that is an input to the typedef box is

bundled together into an output structure of streams. For example, if we want to create a

structure containing three streams for storing 3-D coordinates, then we could construct

the following typedef box using the base type of void:

Name: coord3d

Type: typedef

Input: {

 void x;

 void y;

 void z;

}

Let’s assume the above box is stored in FGlibraries/boxes/types/coord3d.

This type can now be used with the void type to create new types. For example, if we

want to create a structure for storing pyramids with four points, then we can define:

Name: pyramid

Type: typedef

Input: {

 types/coord3d p0;

 types/coord3d p1;

 types/coord3d p2;

 types/coord3d p3;

}

We simply refer to the coord3d type by its location under FGlibraries/boxes.

Typedef boxes added to the canvas appear as constructors. Constructor boxes take the

component streams as inputs and create a structure of streams as the output. Destructor

boxes do not have to be created separately. Instead, add a constructor box to the canvas,

and while holding the Ctrl key down, double click on the name of the box. The

constructor and destructor of the pyramid type are shown in Figure 23.

Primitive Programming Manual 74

Figure 23 – The typedef box defines both the constructor and the destructor

Primitive Programming Manual 75

Appendix – Suggested Style Guide

Gedae has several style conventions that are designed to help make primitives easier to

read and understand.

 Naming Primitives

The name of a primitive should indicate its primary token and data type through a prefix.

If the box performs a conversion in type, then the box should have a prefix that indicates

the primary type of the input and a suffix that indicates the primary type of the output.

Prefixes and suffixes are separated from the rest of the name by an underscore (“_”). The

abbreviations for token and data types are shown in Table 3. Note that a suffix or prefix

is not used for scalar floating point streams unless the box performs a conversion of type.

Table 3 – Abbreviations for Token and Data Types

 Scalar Vector Matrix Var-Vector Var-Matrix

Float none (s) v m vv vm

Complex x vx mx vvx vmx

Integer i vi mi vvi vmi

 Naming Variables

Names of variables for streams and triggers are not capitalized. This practice includes

input and output streams, length streams for variable vectors and variable matrices,

trigger inputs, and range variables over families.

Names of variables for parameters are capitalized. This practice includes input and

output parameters, local variables, array lengths, maximum sizes for variable vectors and

variable matrices, and family sizes.

 Comments

The first line in a primitive’s comment should be a short description of the box’s purpose.

The next line should be a formula or pseudo-code that precisely defines the box’s

algorithm. If further discussion is necessary, then include it after the formula.

Primitive Programming Manual 76

Index
amount, 36, 37

Apply method, 8

avail, 36, 37

box, 6

boxes

cyclic, 62

eval, 68

mux, 61

primitive, 6

trigger, 69

typedef, 73

built-in functions

amount, 36

avail, 36, 37

consume, 36, 37

decode, 59

dirty, 70

encode, 60

produce, 37

push, 69

save_double, 71

save_float, 71

save_int, 71

save_string, 71

size, 14

built-in variables

firing, 63

granularity, 8

queues_ready, 37

Callback method, 71

Comment field, 7

complete merge, 38

complex, 12

consume, 36, 37

consumed, 20

convert

scalars to vectors, 20

variable vectors to scalars, 35

Creating a Primitive, 6–12

Cycle method, 63

cyclic boxes, 62

Cyclic Boxes, 61–66

data flow parameters

delay, 27

hold, 26

overlap, 24

data types, 12

complex, 12

float, 12

int, 12

Data Types, 12

decode, 59

delay, 27

Delay, 27–30

Destroy method, 70

dirty, 70

dynamic, 20

Dynamic and Nondeterministic, 35–42

dynamic queue, 35

Dynamic Queues, 35–36

E_function, 10

E_functions, 10–11

encode, 60

Eval and Trigger Boxes, 66–72

eval boxes, 68

Eval Boxes, 68

Eval method, 68

execute, 35

Families, 31–34

output vectors of different lengths, 33

fields

Comment, 7

Name, 7

Type, 7

fire, 35

firing, 63

Fixed Inplace, 46

float, 12

granularity, 8, 35

granularity loop, 8

GUI, 70

GUI Trigger Boxes, 70–72

hold, 26

Init method, 11, 68

inplace, 9, 46

Inplace Input Pointer Streams, 51

Inplace Output Pointer Streams, 47

Inplace Streams, 9–10

Primitive Programming Manual 77

Input, 7

Input/Output modifiers

dynamic, 35

encoded, 59

inplace, 9, 46

nondet, 37

parameter, 11

stream, 7

trigger, 69

int, 12

Introduction, 5

Iterate, 29

latency, 62

Length method, 62

Local, 22

Local Variables and Reset Merthods,

22–24

mapped, 55

Matrices, 15

matrix, 15

methods, 6

Apply, 8

Callback, 71

Cycle, 63

Destroy, 70

Eval, 68

Init, 11, 68

Length, 62

Reset, 23

Restore, 70

Save, 70

Trigger, 69

multiple-dimensional, 32

mux box, 61

Name field, 7

named parameter notation, 41

nondet, 37

nondeterministic queues, 36

Nondeterministic Queues, 36–42

nondeterministic queues are grouped

into a family, 40

no-op, 21

Optional Inplace, 46

Output, 8

overlap, 24

Overlap and Hold, 24–27

parameter, 11

Parameter Inputs, 11

persistent, 57

Pointer Streams, 43

position dependent notation, 41

primitive, 6

Primitive

creating a, 6–12

simple, 7–9

produce, 36, 37

produced, 20

push, 69

pushed, 69

queues_ready, 37

Reset method, 23

Restore method, 70

Runlength Encoded Streams, 43–60

Save method, 70

save_double, 71

save_float, 71

save_int, 71

save_string, 71

schedule memory, 43

sections

Input, 7

Local, 22

Output, 8

Simple Primitive, 7–9

size, 14

sliding window average, 24

static, 20

stream, 7

subgraph, 6

threshold, 35

Tiled Matrix, 17, 52

Token Types, 13–18

Tokens in the Stream, 20–30

trigger, 69

trigger boxes, 69

Trigger Boxes, 69–70

Trigger method, 69

Type field, 7

typedef boxes, 73

Typedef Boxes, 73–74

unmapped, 55

variable matrix, 17

Primitive Programming Manual 78

variable vectors, 16

Variable Vectors and Matrices, 16–17

vector, 13

Vectors, 13–15

